Monday 12 December 2016

Moving Average Digital Filter

Ein einfach zu bedienender digitaler Filter Der exponentielle gleitende Durchschnitt (EMA) ist ein Typ des unendlichen Impulsantwortfilters (IIR), der in vielen eingebetteten DSP-Anwendungen verwendet werden kann. Es benötigt nur wenig RAM und Rechenleistung. Was ist ein Filter Filter kommen sowohl in analogen und digitalen Formen und existieren, um bestimmte Frequenzen aus einem Signal zu entfernen. Ein übliches Analogfilter ist das unten gezeigte Tiefpass-RC-Filter. Analoge Filter zeichnen sich durch ihre Frequenzantwort aus, wie viel die Frequenzen gedämpft (Amplitudengang) und verschoben (Phasengang) sind. Der Frequenzgang kann unter Verwendung einer Laplace-Transformation analysiert werden, die eine Übertragungsfunktion in der S-Domäne definiert. Für die obige Schaltung ist die Übertragungsfunktion gegeben durch: Wenn R gleich 1 Kiloohm und C gleich einem Mikrofarad ist, ist die Betragsantwort unten gezeigt. Beachten Sie, dass die X-Achse logarithmisch ist (jede Markierung ist 10 Mal größer als die letzte). Die y-Achse ist in Dezibel (das ist eine logarithmische Funktion des Ausgangs). Die Grenzfrequenz für diesen Filter beträgt 1000 rad / s oder 160 Hz. Dies ist der Punkt, bei dem weniger als die Hälfte der Leistung bei einer gegebenen Frequenz vom Eingang zum Ausgang des Filters übertragen wird. Bei der Abtastung eines Signals mit einem Analog-Digital-Wandler (ADC) müssen analoge Filter in eingebetteten Ausführungen verwendet werden. Der ADC erfasst nur Frequenzen, die bis zur halben Samplingfrequenz liegen. Wenn beispielsweise der ADC 320 Abtastungen pro Sekunde erfasst, wird das Filter (mit einer Grenzfrequenz von 160 Hz) zwischen dem Signal und dem ADC-Eingang platziert, um ein Aliasing zu verhindern (was ein Phänomen ist, bei dem höhere Frequenzen im abgetasteten Signal auftreten Niedrigere Frequenzen). Digitale Filter Digitale Filter dämpfen Frequenzen in der Software anstatt analoge Komponenten. Ihre Implementierung beinhaltet das Abtasten der analogen Signale mit einem ADC, wobei dann ein Softwarealgorithmus angewendet wird. Zwei gemeinsame Designansätze für die digitale Filterung sind FIR-Filter und IIR-Filter. FIR Filter Die Finite Impulse Response (FIR) Filter verwenden eine endliche Anzahl von Samples, um den Ausgang zu erzeugen. Ein einfacher gleitender Durchschnitt ist ein Beispiel eines Tiefpass-FIR-Filters. Höhere Frequenzen werden abgeschwächt, da die Mittelung das Signal glättet. Der Filter ist endlich, weil die Ausgabe des Filters durch eine endliche Anzahl von Eingangsabtastwerten bestimmt wird. Als Beispiel addiert ein 12-Punkt-Gleit-Mittelfilter die 12 jüngsten Abtastwerte, dividiert dann durch 12. Die Ausgabe von IIR-Filtern wird durch (bis zu) einer unendlichen Anzahl von Eingangsabtastwerten bestimmt. IIR-Filter Infinite Impulse Response (IIR) - Filter sind eine Art von Digitalfiltern, bei denen der Ausgang theoretisch in jedem Fall durch einen Eingang beeinflusst wird. Der exponentielle gleitende Durchschnitt ist ein Beispiel eines Tiefpass-IIR-Filters. Exponential Moving Average Filter Ein exponentieller gleitender Durchschnitt (EMA) wendet exponentielle Gewichte für jede Probe an, um einen Durchschnitt zu berechnen. Obwohl dies kompliziert scheint, ist die Gleichung, die in der digitalen Filterung Parlance als die Differenzgleichung zur Berechnung der Ausgabe bekannt ist, einfach. In der folgenden Gleichung ist y die Ausgabe x ist die Eingabe und alpha ist eine Konstante, die die Grenzfrequenz festlegt. Um zu analysieren, wie sich dieser Filter auf die Frequenz des Ausgangs auswirkt, wird die Z-Domänenübertragungsfunktion verwendet. Die Amplitudenantwort ist unten für Alpha gleich 0,5 dargestellt. Die y-Achse ist wiederum in Dezibel dargestellt. Die x-Achse ist logarithmisch von 0,001 bis pi. Die Real-Frequenz-Frequenz ordnet der x-Achse zu, wobei Null die Gleichspannung ist und pi gleich der Hälfte der Abtastfrequenz ist. Alle Frequenzen, die größer als die Hälfte der Abtastfrequenz sind, werden gelöscht. Wie erwähnt, kann ein analoges Filter praktisch alle Frequenzen im digitalen Signal unterhalb der halben Abtastfrequenz sicherstellen. Der EMA-Filter ist aus zwei Gründen vorteilhaft in eingebetteten Konstruktionen. Erstens ist es einfach, die Grenzfrequenz einzustellen. Eine Verringerung des Wertes von Alpha verringert die Grenzfrequenz des Filters, wie durch Vergleich der obigen Alpha-0,5-Kurve mit der unten gezeigten Kurve mit alpha 0,1 dargestellt wird. Zweitens ist die EMA einfach zu kodieren und erfordert nur eine geringe Menge an Rechenleistung und Speicher. Die Code-Implementierung des Filters verwendet die Differenzgleichung. Es gibt zwei Multiplikationsoperationen und eine Additionsoperation für jeden Ausgang, der die Operationen ignoriert, die zum Runden von Fixpunktmathematik erforderlich sind. Nur das aktuellste Sample muss im RAM gespeichert werden. Dies ist wesentlich geringer als die Verwendung eines einfachen gleitenden Durchschnittsfilters mit N Punkten, die N Multiplikations - und Additionsoperationen sowie N Samples, die im RAM gespeichert werden sollen, erfordern. Der folgende Code implementiert den EMA-Filter mit 32-Bit-Fixpunkt-Mathematik. Der folgende Code ist ein Beispiel für die Verwendung der oben genannten Funktion. Fazit Filter, sowohl analoge als auch digitale, sind ein wesentlicher Bestandteil eingebetteter Designs. Sie ermöglichen es Entwicklern, unerwünschte Frequenzen zu befreien, wenn sie die Sensoreingänge analysieren. Damit digitale Filter nützlich sind, müssen analoge Filter alle Frequenzen über die Hälfte der Abtastfrequenz entfernen. Digitale IIR-Filter können leistungsstarke Werkzeuge in Embedded-Design, wo Ressourcen begrenzt werden. Der exponentielle gleitende Durchschnitt (EMA) ist ein Beispiel für einen solchen Filter, der in eingebetteten Designs aufgrund des geringen Speicher - und Rechenleistungsbedarfs gut funktioniert. Moving Average Filter (MA Filter) Loading. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Durchschnitt dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, daß der 3-Punkt-Moving-Average-Filter nicht viel getan hat, um das Rauschen herauszufiltern. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende Durchschnittsfilter kein Frequenzband von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, ist der gleitende Durchschnitt ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre Seitenleiste


No comments:

Post a Comment